（1）モニタリングの目的
モニタリングの目的は，松川におけるバイパス運用により生じる河川環境の変化の把握である。

モニタリング計画は，バイパス運用により生じらる河川環境（物理環境，生物環境）の変化につ
いて考察し，それを把握する為に必要なモニタリング項目について，調査地点や調査方法等につい
て，整理するものとした。その際には他機関の事例も参考にした。
（2）バイパス運用により予想される影響と必要なモニタリング項目の検討
松川でバイパスを運用することによる影響について考察する。
バイパス運用前後の土砂収支は図－4．1に示すように計画されており，バイパス運用後には，分派堰上流の土砂の堆積，貯水池内への流入土砂の減少，下流河川への細粒分の増加等の流砂環境の変化が予想 される。

分派堰堆砂
B
W
S
W
W
T

分派堰において掃流砂を捕捉

貯水池内への

流入土砂の減少貯水池堆砂

B	0	0
S	0	3.1
W	5	3.2
T	5	6.3

B ：掃流砂（2．0mm 以上）
S ：浮遊砂（ $0.15 \sim 2.0 \mathrm{~mm}$ ）
い：リオッシュ・ロード（ 0.15 mm 以下）
T ：合計バイパジン砂形侍レーションを考慮した土砂
－ハースパイ計算による土砂収支

このような流砂環境の変化により，下流河川の魚類や付着藻類等の生物にどのような影響が考えられる か，整理したものを図－4．2に示す。
図－4．2より，下流河川では，バイパス運用後に細粒土砂が増加することにより，魚類のエラの目詰まり
や，藻類の剥離更新作用の促進，それによる魚類の餌場の改善等が予想される。
\longrightarrow 想定されるバイパシングの効果
青字
\rightarrow 想定されるバイパシングの影響
赤字

図－4．2 松川における土砂供給の効果と影響に関するイメージ図

以上のことを参考に，バイパス運用により予想される変化や河川環境（物理環境，生物環境）へ与える影響，それを把握する為に必要なモニタリング項目について整理すると，表－4．2のようになる。

表－4． 2 バイパスの運用により予測される変化と影響および必要なモニタリング項目

変化	影響	必要なモニタリング項目
\bigcirc－流況の変化	○物理環境への影響	\bigcirc 流量観測
－出水時（バイパス運用時）の流	－河床材料の細粒化	－貯水池への流入量
況の変化	－瀬䍓構造の変化	－バイパス流量
	－浮石の増加	－ダム放流量
○流砂量の変化		－下流河川の流量
－分派堰，トラップ堰上流におけ	○生態系への影響	
る土砂の堆積	－付着藻類の剥離更新の促進	－流砂量に関するモニタリング項目
－貯水池への流入士砂量の減少	－アユの铒場環境の改善	－分派殹，トラップ堰上流の堆砂測量
（掃流砂•浮逰砂・ウオッシュロ	－魚類のエラの目詰まり，成長阻害	－貯水池の堆砂測量
ード）	－底生動物のカワゲラ等磼間生物の	－バイパス通過土砂量観測
－下流河川へ流下する土砂量の増	ハビタットの増加	－下流河川の河川横断測量
加	－河原の昆虫類のハビタットの多様	
（浮逰砂・ウオッシュロード）	化	○士砂の質に関するモニタリング項目
	－河道内の植生分布の変化	－貯水池ボーリング
○河床材料の変化		－下流河川の河床材料調査
－貯水池の堆積士砂の細粒分の増	○その他	
加	－取水口の目詰まり，利水障害	○濁りに関する水質項目
－下流河川の細粒土砂の増加		－濁度
		－SS
○下流河川の河床高の変化		－SS粒度組成
○下流河川への高濃度濁水の放流		○生態系に関するモニタリング項目 －魚類
		－底生動物
		－付着藻類
		－植生
		○その他
		－井堰堆積状況
		－航空写真撮影
		- 物理環境に関するモニタリング項目 - 河川情報図の作成

表－4． 2 に示すモニタリング項目のらち，青字で示している項目は，水道の水質管理や河川管理・ダ ム管理の一環として別途調査が実施されている項目であり，これの項目については別途調査で得られ たデータを利用することが可能である。よってバイパス施設の影響•効果の検証に必要なモニタリン グ項目からは青字の項目は除外する

3）他機関の事例と松川ダムとの比較
現在日本で土砂バイパスが運用されている他機関の事例について，ダムおよびバイパスの諸元や運用方法について整理•比較を行い（表－4．3），他ダムおよび松川ダムでのモニタリング項目を整理した（表－4．4）。
他ダムで実施されている水質，生物関係の調査項目については，松川ダムにおいてもほとんど網羅されており，十分な調査が行われていると言える。
他ダムでは，バイパスの運用状況の把握やバイパスの効果の検証を目的とした各種調査（バイパ ス流量•通過土砂量•摩耗状況の確認等）が実施されており，これらは松川でも実施する必要があ る重要な項目と考えられる。

表－4．3 他機関および松川ダムおよびバイパス施設の諸元一覧表

項目			旭夕゙ム（関西電力（株））	美和ダム（国土交通省）	小渋夕゙ム（国土交通省）	松川ダム（長野県）
諸	$\begin{array}{\|l\|} \hline \text { 名 } \\ \text {, } \end{array}$	所管	関西電力（株）	国土交通省	国土交通省	長野県
		位置	奈良県吉野郡十津川村	長野県下伊那郡	長野県下伊那郡	長野県飯田市上飯田
		竣工年月	昭和53年	昭和33年11月	昭和44年5月	昭和50年3月
		河川名	新宮川水系旭川	天竜川水系三峰川	天竜川水系小濒川	天竜川水系松川
		目的	発電	洪水調節 かんがい発電	洪水調節 かんがい発電	洪水調節 水道 不特家利水
		型式	ドーム型アーチ式	重カ式コンクリートダム	アーチ式コンクリートダム	重カ式コンクリートダム
		堤高	86.1 m	69.1 m	105 m	84．3m
		堤頂長	199.41 m	367．5m	293.3 m	165.0 m
		総貯水容量	1，547，000干m ${ }^{3}$	29，952千m ${ }^{3}$	58，000干m ${ }^{3}$	7，400干m ${ }^{3}$
	設	全長	$2,350 \mathrm{~m}$	約4，300m	絊4，000m	$1,662 \mathrm{~m}$
			瀑型	標準馬蹄形	標準馬蹄形	幌型
		断面形状	幅•高さ： 3.8 m	$\mathrm{R}=3.90 \mathrm{~m}$	$\mathrm{R}=3.95 \mathrm{~m}$	幅•高さ： 5.2 m
		継断勾配	約1／35	1／100	1／50	1／25
		設計対象流量	$140 \mathrm{~m}^{3} / \mathrm{s}$	$300 \mathrm{~m}^{3} / \mathrm{s}$	$370 \mathrm{~m}^{3} / \mathrm{s}$	$200 \mathrm{~m}^{3} / \mathrm{s}$
		対象土砂	骎流砂	ウォツシュロード	掃流砂 浮遊砂 ウホシュユード	浮遊砂 ウォッシュロード
		（試験）運用開始年月	平成10年4月	平成17年6月	平成28年9月	平成28年9月
		運用方法	ダム流入量が $5 \mathrm{~m}^{3} / \mathrm{s}$ 以上のと きに運用。概ね $120 \mathrm{~m}^{3} / \mathrm{s}$ まで の河川流量はバイパストンネ ルへ（開水路流），それ以上 の流量の時には貯水池にも流入する（オリフィス流）	洪水時のみ。平常時は使わない。	現在検討中 （委員会資料には，バイパス トンネル主ゲートの運用開 始•閉鎖流量を $60 \mathrm{~m}^{3} / \mathrm{s}$ とした 検討結果が掲載されている）	流入量が $20 \mathrm{~m}^{3} / \mathrm{s}$ を超えたら バイパストンネルへ，流入量 が $175 \mathrm{~m}^{3} / \mathrm{s}$ を超えると貯水池 にも流入する。
		運用頻度	（H11～H19の年別運用実績 より）総流入量の5～7割がバ イパストンネルを通して下流 へ流下	平成17年～平成26年でのベ 12回		流入量が $20 \mathrm{~m}^{3} / \mathrm{s}$ を超えること は年数回

■旭ダム

－濁水だけでなく，大粒径の土砂も流す本格的な「バイパス排砂シス テム」が日本で初めて導入された事例。
シミュレーションにより，年間流入土砂量の約 1～2割が湖内に堆砂，残り 8～9 割の土砂はバイパ スによりダム下流に流下したと推定されており，実際に，ダム下流での河床材料の粒径や河床高 の変化が確認されている。

■美和ダム
－日本有数の土砂生産量を誇る天竜川水系三峰川に位置する。
－平成 17 年から平成 26 年までに のバ 12 回の運用されており，合計で約 54 万 m^{2} の排砂効果が確認されている。
下流河川における生物環境に関 する調査の結果，バイパス運用前後で生物の変化は確認されて いない。

■小渋ダム
日本有数の土砂生産量を誇る天竜川水系小渋川に位置する。平成 20 年度からバイパストンネ ル工事に着手し，平成28年9月 に完成し，試験運用が開始され ている。
現在までにモニタリング委員会 が 4 回開催され，現在もモニタ リングに関する検討が行われて いる。

表－4．4 他機関および松川ダムでのモニタリング項目

項目		相艮么		美和为ム					
				sp	BP異用复	8P	$\begin{gathered} 8 \mathrm{BP} \\ \text { 道用後 } \end{gathered}$	sp	$\begin{array}{\|c\|c\|} \hline \text { BP } \\ \text { 逐用後 } \\ \hline \end{array}$
ダム運用データ	流入量	\＃	\dot{H}	$\stackrel{\text { H }}{ }$	\dot{H}	Н	स	$\stackrel{\text { H }}{ }$	$\stackrel{\rightharpoonup}{4}$
	放流量	$\stackrel{\text { \％}}{ }$	$\stackrel{\text { H }}{ }$	$\stackrel{\text { \％}}{ }$	$\stackrel{\text { H }}{ }$	\％	\％	$\stackrel{\text { \％}}{ }$	\％
	甠水位	\％	н	\％	म	\％	\％	म	\％
	雨量	\＃	\＃	\＃	\＃	\＃	\＃	\＃	\＃
館水池内堆砂関連	堆砂測量	$\stackrel{\text { r }}{ }$	$\stackrel{\sim}{*}$	$\stackrel{\text { r }}{ }$	$\stackrel{\text { H }}{ }$	$\stackrel{\text { r }}{ }$	स	\＃	म
	ダム堆砂量	\＃	\＃	\＃	$\stackrel{\text { a }}{ }$	$\stackrel{\text { H }}{ }$	＊	H	$\stackrel{4}{4}$
水質（河川）	ss			0	0	0	0	0	0
	濁度	0	\bigcirc		\＃	\＃	\＃	\bigcirc	\bigcirc
	DO			\％	$\stackrel{\text { \％}}{ }$	ش		0	0
	Ss糖度組成				\bigcirc			0	\bigcirc
				0	0	0	\bigcirc	0	0
	大腸菌群数，T－N，T－P，クロロフィル」			$\stackrel{\text { \％}}{ }$	$\stackrel{\sim}{*}$	$\stackrel{\text { \％}}{ }$			
	$\mathrm{pH}, \mathrm{BOD}, \mathrm{COD}$			H	H	H		\％	a
生物環境（河川）	魚類		\bigcirc	0	\bigcirc	\bigcirc	O＊4	\bigcirc	\bigcirc
	底生動物		\bigcirc	\bigcirc	\bigcirc	\bigcirc	O＊5	\bigcirc	\bigcirc
	付着澡類		0	0	\bigcirc	0	0	0	0
	植生					\bigcirc	\bigcirc	\bigcirc	\bigcirc
	陸上昆虫							0	
物理環境（可川）	河川㶇断測量	0	0			$\stackrel{\square}{4}$	$\stackrel{\square}{4}$	0	0
	河床材料	O＊2	\bigcirc			\bigcirc	\bigcirc	\bigcirc	\bigcirc
	土砂の移動状況の把握（ICタグ追跤調査）					0	\bigcirc		
	河川情報図		0＊6					0	\bigcirc
	\＃挋惟積状況							0	0
	水位流量			\％	\％			H	\dot{H}
	航空写真撮影					0	\bigcirc	0	\bigcirc
	定点写真摄影および目視による土砂堆積状 俗			0＊3	\bigcirc		\bigcirc		
	魚類調査地点の生息噮境調査（地盤高，水深，流速，底質）		\bigcirc						
バイパス施設管理	バイパス摩耗量（損傷状態の磼認）		0		0		0		0
			\bigcirc				\bigcirc		
	（流砂量と摩耗量の関係性の把握） トンネル内水位流速（バイパス流量の検証）				\bigcirc				
	バイパス流量		\bigcirc		\bigcirc		\bigcirc		0
	濁度㪇測								未定
	分派状況の検証				\bigcirc				
	バイパス放流施設各所における出水時（バ イパス放流時ビデオ撮影				\bigcirc		\bigcirc		
土砂収支	流砂量観測（バイパス通過土砂量）		0		0		0		0
	分派腺（碞砂殹等も含む）上流の堆砂量		\bigcirc		\bigcirc	0	\bigcirc		\bigcirc
							\bigcirc		
	（測量•河床材料） 貯水池ボーリング						0	0	0
水質（ ${ }^{\text {（ }}$（ ${ }_{\text {矿水池）}}$	SS．水温			0	0	0	\bigcirc	\％	म
	pH，BOD，DO，大腸苜群数，クロロフィル」a			H	\％	\％		\％	\％
	COD，T－N，T－P	0	0	\％	\％	\％		\％	\％
	濁度	0	0	0	0	0	0	$\stackrel{\sim}{4}$	\＃
	植物プランクトン			H	H	H			
	赤潮発生回数•回数	0	0	0	0				
	全マンガン，溶解性マンガン							H	
底質（館水池）	重金属								0
生物環境（貯水池） 本川への影響評価（松川の場合，天童川への影響評価）	魚類								\bigcirc
	河川横断測量							0	\bigcirc
	航空写真撮影							0	\bigcirc

※：モ二刘ンク期間绦ア後，水国の移行する予定。

 ※：：河川管理やタムのの管理を目的として実施をれている項

平成 27 年度に検討したモニタリング計画を下表に示す。下表のモニタリング計画は，平成 24 年度に，バイパス運用が生物環境に与える影響について着目してモニタリング計画を検討しており，それをベース として，（3）の他機関のモニタリング状況も踏まえて，生物環境や物理環境の内容の精査を行い，バイパス施設管理や土砂収支に関する項目を追加する形で整理したものである。

表－4．5 モニタリング計画（案）

$\begin{aligned} & \text { 水質 } \\ & \text { (河II } \end{aligned}$	Ss，濁度，Do，ss粒度組成（採水） 水温
生物環境 （河川）	$\begin{aligned} & \square \text { 魚類(アユ) } \\ & \square \text { 魚類(現存量•繁㱛状況) } \\ & \square \text { 底生生物 }(\text { 定量•定性) } \\ & \square \text { 付着藻頪 } \\ & \leftrightarrow \text { 植物 } \end{aligned}$
物理環境 （河川）	
バイパス施設管理	```\longleftrightarrowバイパストンネル摩耗量調査 \longleftrightarrowバイパストンネル内の水位および流速の計測 O バイパス流量観測``` ```濁度観測 ```
土砂収支	大 流形量観測 分派堰上流の堆砂量調査 眝水池ボーリング
$\begin{aligned} & \text { 水質 } \\ & \text { (貯水池) } \end{aligned}$	
$\begin{gathered} \hline \text { 底質 } \\ \text { (蛣涾) } \end{gathered}$	临重金属
生物環境 （貯水池）	会 魚類 囟プランクトン
	$\underset{\text { 曻川河川横断測量 }}{\longleftrightarrow \text { 航空写真摄影 }}$

図－4．3 モニタリング位置図

4．3 各モニタリング項目の詳細
4．3．1【水質（河川）】SS•濁度•DO•SS 粒度組成•水温

	内容	
（1）調査目的	インパクト要因の状況把握 （生物に与える影響等を考察する際のバックデータ の取得）	
（2） 調査位置	A：出水時水質分析（SS，濁度，DO，SS 粒度組成） St．C，St．1，St．2，St．4，ダム直下流地点，時又地点（天竜橋） 計 6 地点 B ：水温連続観測：St．C，St．1，St．2，St．3，St． 4 計5地点	図－4．4参照
（3） 調查時 期，頻度	A：ピーク流入量が $40 \mathrm{~m}^{3} / \mathrm{s}$ 以上となることが予想さ れる出水時（平均 4 回／年程度発生＊）に実施。飯田市の時間雨量が 10 mm 以上の降雨が数時間継続する予報を目安とする。降雨が最も強くなると予想される 6 時間前には現地で調査を行える体制 にし，以降 1 時間ごとに採水を行う。分析は，採水した試料からピックアップして行う。 B：観測機器による連続観測 1 時間ピッチ（毎正時）で連続観測	－ピーク流入量 $40 \mathrm{~m}^{3} / \mathrm{s}$ ：松川で高水流量観測を実施する目安。 ピーク流入量が $40 \mathrm{~m}^{3} / \mathrm{s}$ 以上となる出水は平均 4.1 回／年発生（表－4．7）。 －実施の目安としてピーク流入量 $20 \mathrm{~m}^{3} / \mathrm{s}$ も考えられるが， $40 \mathrm{~m}^{3} / \mathrm{s}$ のほらが， $20 \mathrm{~m}^{3} / \mathrm{s}$ に比べて作業上の負担が軽く さらに高水流量観測と同期することが可能であることから $40 \mathrm{~m}^{3} / \mathrm{s}$ とした。
（4） 調查方法	A：出水時水質調查 - 出水による流量増加時から現地採水を開始。 - 調査終了は，原則として採水開始から 18 時間後とし，監督員との協議により決定。 －採水は，調査地点の橋梁上からバケツを用いて実施。 －採水した試料を持ち帰り，分析に供する試料を選定する。 －分析を行い，分析結果を整理する。 B：観測機器による水温の連続観測 －各調查地点に設置された水温計で連続観測を行 う。 －定期的に（3 か月に 1 回程度）観測機器の点検 やデータの回収を行う。	
（5）⿳㇒⿻⿱一⿱日一丨一力丶丶 要度	必須項目のうち，特に重要な項目に該当	

図－4．4 モニタリング地点（案）

表－4．7 ピーク流入量 $20 \mathrm{~m}^{3} / \mathrm{s}$ を超過した出水のうち $20 \mathrm{~m}^{3} / \mathrm{s}$ 以上継続時間が 6 時間以上の出水の発生回数
（平成 15 年～平成 24 年，時間データ）

	$20 \mathrm{~m}^{3} / \mathrm{s}$ 以上䋛䋊時間が 6 時間以上の出水の発生回数																
	（ $\begin{gathered}20 \\ \left(\mathrm{~m}^{3} \mathrm{~s}\right.\end{gathered}$	25 $\left(\mathrm{~m}^{3} \mathrm{~s}\right)$	$\left.\begin{gathered} 30 \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \end{gathered} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hline 35 \\ \left(m^{3} / \mathrm{s}\right) \end{array} \right\rvert\,$	（ $\begin{gathered}40 \\ \left(\mathrm{~m}^{3} \mathrm{~s}\right.\end{gathered}$	$\begin{gathered} 45 \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \end{gathered}$	（ $\left.\begin{array}{c}50 \\ \left(\mathrm{~m}^{3} \mathrm{~s}\right.\end{array}\right)$	$\left.\begin{gathered} 55 \\ \left(m^{3} / \mathrm{s}\right) \end{gathered} \right\rvert\,$	$\begin{gathered} 60 \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \end{gathered}$	$\begin{gathered} 65 \\ \left(m^{3} / \mathrm{s}\right) \end{gathered}$	$\binom{70}{\left(\mathrm{~m}^{3} / \mathrm{s}\right)}$	$\begin{gathered} 75 \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \end{gathered}$	$\begin{gathered} 80 \\ \left(m^{3} / \mathrm{s}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline 85 \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \end{array}$	$\begin{array}{\|c\|} \hline 90 \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \\ \hline \end{array}$	$\begin{gathered} 95 \\ \left(\mathrm{~m}^{3} / \mathrm{s}\right) \end{gathered}$	100 $\left.\mathrm{~m}^{3} / \mathrm{s}\right)$
H15（2003）	11	11	9	6	5	3	3	3	3	2	2	2	2	2	2	1	1
H16（2004）	12	12	10	9	8	7	6	5	5	5	4	4	4	2	2	1	1
H17（2005）	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
H18（2006）	6	6	5	3	3	2	2	2	1	1	1	1	1	，	1	1	1
H19（2007）	2	2	2	2	2	2	2	1	1	1	1	1	0	0	0	0	0
H20（2008）	4	4	2	1	1	1	1	0	0	0	0	0	0	0	0	0	0
H21（2009）	8	8	6	6	4	3	2	0	0	0	0	0	0	0	0	0	0
H22（2010）	12	12	9	7	7	7	4	3	2	0	0	0	0	0	0	0	0
H23（2011）	9	9	9	6	6	6	5	4	3	3	2	2	1	1	1	0	0
H24（2012）	6	6	6	5	4	4	3	3	2	1	1	0	0	0	0	0	0
10年間合計	71	71	59	46	41	36	29	22	18	13	11	10	8	6	6	3	3
平均（回／年）	7.1	7.1	5.9	4.6	4.1	3.6	2.9	2.2	1.8	1.3	1.1	1.0	0.8	0.6	0.6	0.3	0.3

表－4．8 モニタリング内容（魚類）

	内容	根拠•備考
（1）調査目的	A：アユ成長量調査：短期的な影響の評価 B：魚類現存量調査：長期的な影響の評価 C：繁殖状況調査：長期的な影響の評価経年変化を整理することにより，バイパス運用が魚類に与える長期的•短期的な影響を評価する。	
（2）調査位置	$\text { A:St.2, St. 3, St. } 4$ 計 3 地点 B•C：St．C，St．1，St．2，St．3，St． 4 計 5 地点	A：アユの放流は主に St． $2^{\sim} 3$ の範囲で実施されて いる。既往調査結果から， それより上流ではアユの存在が碓認されていないた め，St．C，St． 1 は調査地点 として設定していない。
（3）調査時 期，頻度	A：6～9月に月 1 回，出水後に1回 B：毎年夏季～秋季に 1 回 C：初夏及び秋季の 2 回	
（4）調査方法	A：投網によるアユの捕獲調査を実施。捕獲した アユの個体数•体長•体重の計測および記録を行い，肥満度を算出。 B：投網，タモ網による魚類の捕獲調査を実施 し，種類，個体数，体長•体重の計測および記録を行い，写真撮影を行う。定努力量調査と し，投網は 1 地点あたり 10 投を目安に，タモ網については 1 人 $\times 1$ 時間に換算して評価を行 う。 C：踏査により魚類の産唒•繁殖行動や卵•仔稚魚を捕獲及び目視確認し，種類や個体数，繁殖行動，位置等の記録，写真撮影を行ら。	
（5）⿳㇒⿻⿱一⿱日一丨一力丶丶 要度	必須項目のらち，特に重要な事項に該当	

表－4．9 モニタリング内容（底生動物）

	内容	根拠•備考
（1）調査目的	A：定量調查：短期的な影響の評価 B：定性調査：長期的な影響の評価	
（2）調査位置	A•B：St．C，St．1，St．2，St．3，St． 4 計 5 地点	
（3）調査時期，頻度	A ：出水後～3ヶ月後に計 4 回（直後， 2 週間後， $1 ヶ$ ヶ月後， $3 ヶ$ ヶ後）及び冬季に1回 計5回 B：冬季に1回	
（4）調査方法	A：定量調查（コドラート調査） －試料の採取はコドラート枠 $2 \mathrm{~cm} \times 25 \mathrm{~cm}$ のサーバーネットを用い て， 1 地点あたり 2 コドラートを採取し，その合量を 1 検体と して同定•計測に充てる。 －採集は，調査地点の早瀬で実施。コドラート内の河床材料をす べてサンプリングし，採集された底生動物を抽出。 －採集した底生動物のサンプルは $5 \sim 10 \%$ ホルマリン溶液で固定，ポリ瓶に保管し室内に持ち帰り，種の道程，湿重量の計測，個体数の計数を行う。 B：定性調查 －調查対象地点に生息する種組成の把握のため，タモ網などを用 いて底生動物を任意採集。対象とする環境は，早瀬，淵，水際植生帯等，調查地点に存在する環境を網羅するように設定。	
（5）⿳㇒⿻⿱一⿱日一丨一力丶丶 要度	必須項目のらち，特に重要な事項に該当	

	内容	根拠•備考
（1）調査目的	－短期的な影響の評価（出水後の回復状況の把握）	－松川では下伊那漁業協同組合によ るアユの放流が実施されており，ア ユの餌として付着藻類は重要であ り，特に出水後の回復状況が課題。
（2）調査位置	－St．C，St．1，St．2，St．3，St． 4 計 5 地点	
（3）調査時 期，頻度	－出水後～1ヶ月後に計 4 回 $\cdot 6 ~ 8$ 月に 2 回	$\cdot 6 ~ 8$ 月の調査は，アユの生息期間中で，出水の影響を受けにくい時期 における付着藻類現存量の最大値を把握することが目的。
（4）調査方法	- 早瀬において擦り取り法による定量採取を実施。 - 調査地点の瀬を対象として河床材料（石）表面から付着藻類をサンプリングし，各分析項目について各地点 2 試料を分析に供する。 －1試料は河床の磼 5 個から採集し，それらをひとつ にまとめて分析を行ら。 - 碩 1 個からの採集面積は，直径 3 cm の円とする。 - クロロフィルa量，乾燥重量，強熱減量，有機物量，無機物量等の経年変化を整理することにより，出水後の回復状沉について考察する。	
（5）⿳㇒⿻⿱一⿱日一丨一力丶丶 要度	－必須項目のうち，特に重要な事項に該当	

4．3．5【生物環境（河川）】植物

表－4．11 モニタリング内容（植物）

	内容	根拠•備考
（1）調査目的	•長期的な影響の評価	水辺の主要な環境 要因として設定
（2）調査位置	•既往調查で沈水植物などが確認されている地点を中心に松川沿 い全域を踏査。	
（3）調查時期，頻度	•毎年夏季～秋季に 1 回	
（4）調査方法	•沈水植物，湿地性植物を対象として，既往調査で分布を確認さ れたエリアを中心に，松川ダム下流域全域にわたつて調查。 •沈水植物等の生育を確認した箇所において，植生調査（群落組 成及び群落面積の確認）を行う。	
（5）重要度	•必須項目のらち，特に重要な事項に該当	

表－4．12 モニタリング内容（河川横断測量）

表－4．13（1）モニタリング内容（河床材料調査）【1／2】

	内容	根拠－備考
（1）調査目的	- 生物調査結果を考察する際のバックデータの取得 - バイパス運用前後の河床材料の変化の把握	
（2）調査位置	A•B•C：St．C，St．1，St．2，St．3，St． 4 計 5地点 （バイパス運用後の河床の変化の状況次第では，A について調査地点の追加も考えられる。）	
（3）調査時 期，頻度	A：毎年秋季～冬季（流況安定期）に 1 回および大規模出水後 B：大規模出水後 C：大規模出水後	－定期的に年 1 回実施する場合，そ の年に発生した出水の規模によって は河床材料の変化が見られないこと も予測されるため，調查効率を考慮 し，Bの分析を伴ら河床材料調査は河床材料の変化が期待されるような大規模出水後に実施。 －A の定点写真撮影は，B の補助的な意味合いで実施するものとし，Bに比べて比較的容易に実施できること から，実施頻度は高めに設定。

表－4．13（2）モニタリング内容（河床材料調査）【2／2】

	内容	根拠－備考
（4）調査方法	A：河床材料の定点写真撮影 －各調査地点において，礫や石などの粗粒分が多い粗粒区画，砂を中心とした細粒区画，各1箇所（計2か所）で実施。 －水際（出水時に冠水する箇所）に方形枠を設置，上方から枠全体が写るように写真を撮影。 B：粒度分布調查（定点写真撮影実施後，下記の作業を行う） －砂䃯の採取は，カラースプレーにより枠内の表層を着色し，着色さ れた砂礫をすべて採取（第 1 層）し，再度カラースプレーで表面を着色して着色した砂碩を採取（第2層）する要領で実施。 － 20 mm 以上の砂礫については現地で粒径別に重量を計測。 $\cdot 20 \mathrm{~mm}$ 未満の細粒分については，採取した試料を持ち帰り，室内でふ るい分け試験を実施。 C：粒度分布調査（容積法•線格子法） ■容積法：基準粒径以下の河床材料を対象として実施。 （1）調査区画（ $1 \times 1 \mathrm{~m}$ ）の表層を $20 \sim 30 \mathrm{~cm}$ 程度の深さまで剥ぎ取る。 （2）表層 $20 \sim 30 \mathrm{~cm}$ 以低の土砂を鋁直方向に約 50 cm 程度掘削する。 （3）採取した土砂の掘削重量を計測する。 （4）基準粒径（ 75 mm ）以上の土砂（土石）の三軸（短径•中径•長径）及び重量を計測し，取り除く。 （5）基準粒径以下の土砂は四分法を行い，一部を持ち帰り，粒度分析を行ら。その際，持ち帰る土砂の重量を計測する。 ■線格子法：基準粒径以上の河床材料を対象として実施。 （1）河床上に巻き尺等で直線を張り，一定間隔（河床材料の最大径以 上）に採取箇所を設定し，その直下に存在する磼を採取する。 （直線は河道横断方向に張り，河道幅を超える場合は直線を分割して並列させる。） （2）採取した礫の3軸（短径•中計•長径）を計測する。ただし，計測 は基準粒径以上の磼のみを対象とする。 なお，本調査では直線長 $50 \mathrm{~m}, ~ 50 \mathrm{~cm}$ 間隔を基本として礫を採取•計測した。 （3）硯の平均粒径は計測した三軸の幾何平均（平均粒径 $=$（長径 \times 中径 \times 短径）${ }^{1 / 3}$ ）より算出する。 A，C ：運用開始以降 10 間程度実施し，下流河川への影響•効果がないと評価された場合には調査終了 B：運用開始以降数年間実施し，ある程度データが蓄積されれば調査終了	
（5）⿳㇒⿻⿱一⿱日一丨一力丶丶 要度	－特に重要な項目	

表－4． 16 現況用排水施設一覧

表－4．14 モニタリング内容（河川情報図）

| | 内容 |
| :--- | :--- | :--- | 根拠•備考

井堰名	所在地	かんがい面積 （ha）	取水量（m³ s ）		慣行許可
			最 大	最 小	
新井	飯田市鼎字切石	150.0	0.652	0． 281	慣行
伊賀良井	＂ 1	455.7	1． 987	1． 152	＂
車川井	＂＂	150.0	0.652	0.376	＂
（緑地）	＂上茶屋	35.0	0． 150	0.087	＂
思井川	＂下茶屋	45.0	0． 198	0.115	＂
山下井	＂\quad＂	30.0	0.131	0.076	＂
荒川井	＂大字松尾	50.0	0.220	0.128	＂
御用水	＂上飯田	40.0	0． 173	0.101	＂
玄佐井	＂＂	18.0	0.080	0.046	＂
伊賀屋井	＂上茶屋	35.0	0． 150	0． 087	＂
吉政井	＂上茶屋	－	－	－	－
小松原井	＂鼎西鼎	－	－	－	－
八反田井	＂上郷別府	－	－	－	－
$13 ヶ$ 所					

参考として，平成 28 年 1 月に実施された調査結果の一部を次頁に示す。

4．3．9【物理環境（河川）】井堰堆積状況

表－4．15 モニタリング内容（井堰堆積状況）

	内容	根拠•備考
（1）調查目的	•土砂による井堰の取水口の堆積状況の把握	
（2）調査位置	•松川ダム下流全域の取水口	
（3）調査時期， 頻度	•出水期後に1回	
（4）調查方法	•松川ダム下流の既往の取水口における土砂の堆積状況 を目視で確認，状況写真を撮影，土砂堆積や取水障害 の有無を記録。	
（5）重要度	•必須項目のうち，特に重要な事項に該当	

図－4．5 井堰堆積状況調査地点位置図

